当前位置:首页 » 化学 » 正文

分子混合创造超稳定玻璃

20 人参与  2021年10月15日 14:53  分类 : 化学  评论
by Chalmers University of Technology Researcher Sandra Hultmark works with a sample of the new glass material using a FSC (Fast Scanning Calorimetry) machine

Credit: Sepideh Zokaei, Chalmers University of Technology Researchers at Chalmers University of Technology, Sweden, have succeeded in creating a new type of super-stable, durable glass with potential applications ranging from medicines, advanced digital screens, and solar cell technology

The study shows how mixing multiple molecules—up to eight at a time—can result in a material that performs as well as the best currently known glass formers

A glass, also known as an "amorphous solid," is a material that does not have a long-range ordered structure—it does not form a crystal

Crystalline materials on the other hand are those with a highly ordered and repeating pattern

The fact that a glass does not contain crystals is what makes it useful

The materials that we commonly call "glass" in every day life are mostly silicon dioxide-based, but glass can be formed from many different materials

Researchers are therefore always interested in finding new ways to encourage different materials to form this amorphous state, which can potentially lead to the development of new types of glass with improved properties and new applications

The new study, recently published in the scientific journal Science Advances, represents an important step forward in that search

"Now, we have suddenly opened up the potential to create new and better glassy materials, by simply mixing many different molecules

Those working with organic molecules know that using mixtures of two or three different molecules can help to form a glass, but few might have expected that the addition of more molecules, and this many, would achieve such superior results," says Professor Christian Müller at the Department of Chemistry and Chemical Engineering at Chalmers University who led the research team behind the study

Best result for any glass forming material A glass is formed when a liquid is cooled down without undergoing crystallization, a process called vitrification

The use of mixtures of two or three molecules to encourage glass formation is a well-established concept

However, the impact of mixing a multitude of molecules on the ability to form a glass has received little attention

The researchers experimented with a mixture of up to eight different perylene molecules which, individually, have a high fragility—a property related to how easy it is for a material to form a glass

But mixing the many molecules together resulted in a substantial decrease in fragility, and a very strong glass former with ultralow fragility was formed

"The fragility of the glass we created in the study is very low, representing the best glass-forming ability that has been measured not only for any organic material but also polymers and inorganic materials such as bulk metallic glasses

The results are even superior to the glass forming ability of ordinary window glass, one of the best glass formers that we know of," says Sandra Hultmark, doctoral student at the Department of Chemistry and Chemical Engineering and lead author of the study

Extending product life and saving resources Important applications for more stable organic glasses are display technologies such as OLED screens and renewable energy technologies such as organic solar cells

"OLEDs are constructed with glassy layers of light-emitting organic molecules

If these were more stable it may improve the durability of an OLED and ultimately the display," Sandra Hultmark explains

Another application that may benefit from more stable glasses are pharmaceuticals

Amorphous drugs dissolve more quickly, which aids rapid uptake of the active ingredient upon ingestion

Hence, many pharmaceuticals make use of glass-forming drug formations

For pharmaceuticals it is vital that the glassy material does not crystallize over time

The more stable the glassy drug, the longer the shelf life of the medicine

"With more stable glasses or new glass forming materials, we could extend the lifespan of a large number of products, offering savings in terms of both resources and economy," says Christian Müller

"Vitrification of octonary perylene mixtures with ultralow fragility" has been published in the scientific journal Science Advances

来源:由m.ay3.org整理转载自PH,转载请保留出处和链接!

本文链接:https://m.ay3.org/huaxue/22028.html

creates  mixing  
<< 上一篇 下一篇 >>

  • 评论(0)
  • 赞助本站

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

Powered By m.ay3.org 科技新闻 版权所有
备案号:苏ICP备14043872号-2